FANDOM


Ý nghĩa Thể hiện
Dấu thanh \acute{a} \ \ \grave{a} \ \ \hat{a} \ \ \tilde{a} \ \ \breve{a} \ \ \check{a} \ \ \bar{a} \ \ \ddot{a} \ \ \dot{a} $ \acute{a} \ \ \grave{a} \ \ \hat{a} \ \ \tilde{a} \ \ \breve{a} \ \ \check{a} \ \ \bar{a} \ \ \ddot{a} \ \ \dot{a} $
Hàm (cách viết đúng) \sin x + \ln y +\operatorname{sgn} z

\sin a \ \cos b \ \tan c \ \cot d \ \sec e \ \csc f
\sinh g \ \cosh h \ \tanh i \ \coth j
\arcsin k \ \arccos l \ \arctan m
\lim n \ \limsup o \ \liminf p
\min q \ \max r \ \inf s \ \sup t
\exp u \ \lg v \ \log w
\ker x \ \deg x \gcd x \Pr x \ \det x \hom x \ \arg x \dim x

$ \sin x + \ln y +\operatorname{sgn} z $

$ \sin a \ \cos b \ \tan c \ \cot d \ \sec e \ \csc f $
$ \sinh g \ \cosh h \ \tanh i \ \coth j $
$ \arcsin k \ \arccos l \ \arctan m $
$ \lim n \ \limsup o \ \liminf p $
$ \min q \ \max r \ \inf s \ \sup t $
$ \exp u \ \lg v \ \log w $
$ \ker x \ \deg x \gcd x \Pr x \ \det x \hom x \ \arg x \dim x $

Hàm (cách viết sai) sin x + ln y + sgn z $ sin x + ln y + sgn z\,\! $
Mođun s_k \equiv 0 \pmod{m}

a \bmod b

$ s_k \equiv 0 \pmod{m} $

$ a \bmod b\,\! $

Vi phân \nabla \; \partial x \; dx \; \dot x \; \ddot y $ \nabla \; \partial x \; dx \; \dot x \; \ddot y $
Tập hợp \forall \; \exists \; \empty \; \emptyset \; \varnothing \in \ni \not\in \notin

\subset \not\subset \subseteq \supset \supseteq \cap \bigcap \cup \bigcup \biguplus

$ \forall \; \exists \; \empty \; \emptyset \; \varnothing \in \ni \not\in \notin $

$ \subset \not\subset \subseteq \supset \not\supset \supseteq \cap \bigcap \cup \bigcup \biguplus $

\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup $ \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup $
Lôgíc p \land \wedge \; \bigwedge \; \bar{q} \to p\ lor \vee \; \bigvee \; \lnot \; \neg q \; \setminus \; \smallsetminus $ p \land \wedge \; \bigwedge \; \bar{q} \to p \lor \vee \; \bigvee \; \lnot \; \neg q \; \setminus \; \smallsetminus $
Căn \sqrt{2}\approx 1.4 $ \sqrt{2}\approx 1.4 $
\sqrt[n]{x} $ \sqrt[n]{x} $
Tương quan \sim \; \approx \; \simeq \; \cong \; \le \; < \; \ge \; > \; \equiv \; \not\equiv \; \ne \; \propto \; \pm \; \mp $ \sim \; \approx \; \simeq \; \cong \; \le \; < \; \ge \; > \; \equiv \; \not\equiv \; \ne \; \propto \; \pm \; \mp $
Hình học \Diamond \; \Box \; \triangle \; \angle \; \perp \; \mid \; \nmid \; \| \; 45^\circ $ \Diamond \; \Box \; \triangle \; \angle \; \perp \; \mid \; \nmid \; \| \; 45^\circ $
Mũi tên \leftarrow \; \gets \; \rightarrow \; \to \; \leftrightarrow

\longleftarrow \; \longrightarrow
\mapsto \; \longmapsto \; \hookrightarrow \; \hookleftarrow
\nearrow \; \searrow \; \swarrow \; \nwarrow
\uparrow \; \downarrow \; \updownarrow

$ \leftarrow \; \gets \; \rightarrow \; \to \; \leftrightarrow $

$ \longleftarrow \; \longrightarrow $
$ \mapsto \; \longmapsto \; \hookrightarrow \; \hookleftarrow $
$ \nearrow \; \searrow \; \swarrow \; \nwarrow $
$ \uparrow \; \downarrow \; \updownarrow $

\rightharpoonup \; \rightharpoondown \; \leftharpoonup \; \leftharpoondown \; \upharpoonleft \; \upharpoonright \; \downharpoonleft \; \downharpoonright $ \rightharpoonup \; \rightharpoondown \; \leftharpoonup \; \leftharpoondown \; \upharpoonleft \; \upharpoonright \; \downharpoonleft \; \downharpoonright $
\Leftarrow \; \Rightarrow \; \Leftrightarrow

\Longleftarrow \; \Longrightarrow \; \Longleftrightarrow (or \iff)
\Uparrow \; \Downarrow \; \Updownarrow

$ \Leftarrow \; \Rightarrow \; \Leftrightarrow $

$ \Longleftarrow \; \Longrightarrow \; \Longleftrightarrow (or \iff) $
$ \Uparrow \; \Downarrow \; \Updownarrow $

Đặc biệt \eth \; \S \; \P \; \% \; \dagger \; \ddagger \; \star \; * \; \ldots

\smile \frown \wr \oplus \bigoplus \otimes \bigotimes
\times \cdot \circ \bullet \bigodot \triangleleft \triangleright \infty \bot \top \vdash \vDash \Vdash \models \lVert \rVert
\imath \; \hbar \; \ell \; \mho \; \Finv \; \Re \; \Im \; \wp \; \complement \quad \diamondsuit \; \heartsuit \; \clubsuit \; \spadesuit \; \Game \quad \flat \; \natural \; \sharp

$ \eth \; \S \; \P \; \% \; \dagger \; \ddagger \; \star \; * \; \ldots $

$ \smile \frown \wr \oplus \bigoplus \otimes \bigotimes $
$ \times \cdot \circ \bullet \bigodot \triangleleft \triangleright \infty \bot \top \vdash \vDash \Vdash \models \lVert \rVert $
$ \imath \; \hbar \; \ell \; \mho \; \Finv \; \Re \; \Im \; \wp \; \complement \quad \diamondsuit \; \heartsuit \; \clubsuit \; \spadesuit \; \Game \quad \flat \; \natural \; \sharp $

Viết thường bằng \mathcal \mathcal {45abcdenpqstuvwx} $ \mathcal {45abcdenpqstuvwx} $
Phủ định bằng \not \not\vdots \; \not\in \; \not= \; \not\exists \; \not\perp \; \not\| \; \not\Leftrightarrow $ \not\vdots \; \not\in \; \not= \; \not\forall \; \not\exists \; \not\perp \; \not\| \; \not\Leftrightarrow $